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H I G H L I G H T S  

• During carbon sequestration, CO2 migration is affected by so many uncertainties. 
• Numerical simulations of multi-phase fluid dynamics are computational expensive. 
• The combined effects of capillary pressure and relative permeability are explored. 
• The application of Machine Learning provides a huge computational speed-up. 
• Capillary pressure imposes important effect to CO2 and fluid pressure distribution.  
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A B S T R A C T   

Successful geologic CO2 storage projects depend on numerical simulations to predict reservoir performance 
during site selection, injection verification, and post-injection monitoring phases of the project. These numerical 
simulations solve non-linear sets of coupled partial differential equations, while accounting for multi-phase fluid 
dynamics on the basis of constitutive equations that are embedded into the solution scheme. As a consequence, 
individual simulations often require tens to hundreds of hours to complete on high-performance computing 
clusters. Moreover, laboratory experiments reveal that parametric functions for capillary pressure and relative 
permeability exhibit substantial variability, even within the same rock type. This combination of computational 
expense and wide-ranging parametric variability means that there remains substantial uncertainty in the 
behavior of multi-phase CO2-water systems, particularly in the context of feedbacks between relative perme
ability and capillary pressure. To bridge this knowledge gap, we develop a novel workflow that utilizes physics- 
based numerical simulation to train an artificial neural network (ANN) emulator for interrogating the multi
variate parameter space that governs both capillary pressure and relative permeability. With this approach, the 
ANN is trained to emulate both fluid pressure distribution and CO2 saturation, which are then interrogated 
quantitatively to generate parametric response surface mappings with high-fidelity resolution. Results from this 
study initially show that capillary entry pressure is the dominant control on both CO2 plume geometry and fluid 
pressure propagation when considering the combined effects of capillary pressure and relative permeability, 
particularly when phase interference is low and residual CO2 saturation is high. Moreover, the ANN emulator 
provides tremendous computational speed-up by computing 2691 individual simulations in several minutes; 
whereas, the same simulation ensemble would have required ~3 years of simulation time using only physics- 
based simulation methods (25,000 times speed up).   
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1. Introduction 

Anthropogenic CO2 emissions are strongly implicated in increasing 
global temperatures, and carbon capture and sequestration (CCS) is 
considered as an engineering-based approach designed to reduce the 
total mass of atmospheric CO2 releases from point source generators 
[1,2,3,4,5]. Many potential geological formations have been proposed 
for anthropogenic CO2 emission storage [6,7,8]. Among them, deep 
brine aquifers are of special interest because of their widespread 
worldwide distribution [9] and large storage capacity [10]. A successful 
CCS project is dependent on whether or not the injected CO2 can be 
stored in the reservoir safely over a long-time period, e.g., 103–104 years 
[1,11]. 

During CO2 injection and trapping processes, uncertainties associ
ated with reservoir properties and geologic conditions affect the distri
bution and migration of CO2. For example, reservoir PTX (pressure, 
temperature, composition) conditions affect the thermodynamics of CO2 
dissolution [12,6], which in turn affects the saturation state that governs 
CO2 plume geometry through capillary pressure [13] and relative 
permeability [14,15] effects. In natural geologic systems, these phe
nomena are subject to substantial uncertainty, which affects not only the 
migration of CO2 but also the fluid pressure perturbation [16]. As a 
result, the interactions between PTX-dependent fluid properties and 
multi-phase fluid dynamics require careful consideration during CCS 
project assessment. To understand the mechanisms affecting CO2 
migration, numerous laboratory and modeling studies have been done to 
quantitively characterize CO2 behavior under different reservoir con
ditions [17,18,19,20,21]. Wu et al. [13] discovered the effect of sub
stantial variability of capillary pressure measurements on supercritical 
CO2 (scCO2) migration, and how this variability influences CO2 plume 
geometry in a sandstone reservoir. In Pollyea [14], the uncertainty of 
relative permeability effects was quantified in a basalt reservoir by 
performing numerical CO2 injection simulations, and the results showed 
that the injection pressure accumulation and CO2 plume geometry are 
strongly affected by relative permeability as well. In addition, Jayne 
et al. [12] found that thermodynamic effects during CO2 migration may 
cause a warming front of up to 4 ◦C within the reservoir due to CO2 
dissolution, and that these temperature changes can be used as a thermal 
monitor for predicting CO2 breakthrough. 

The migration of CO2 and fluid pressure in geologic formations may 
cause leakage through abandoned wells and structural features, e.g., 
faults and fractures. As a result, the leakage of CO2 not only reduces the 
storage efficiency but may also contaminate groundwater resources in 
shallow aquifers [16]. In order to assess the efficiency of CCS projects 
prior to the construction, it is essential to estimate the risk profile and 
evaluate reservoir performance [22,23,24,25]. The National Risk 
Assessment Partnership (NRAP), a U.S. Department of Energy initiative, 
has been pursuing research on leakage risk and reservoir performance 
for carbon sequestration. Many studies focus on the monitoring of CO2 
saturation and pressure propagation within the reservoir during injec
tion for leakage risk estimation. More importantly, fluid pressure and 
CO2 saturation results can be used as inputs for the leakage estimation 
model to predict rates and volumes of CO2 leakage [26,27]. For 
example, Zhang et al. [28] modeled the potential of fluid migration 
detection based on CO2 saturation and pressure monitoring in the 
overlying seal layer, in which exists a high permeability zone. The re
sults showed that pressure response resulting from CO2 migration was 
detected up to 1650 m from the centroid of the high permeability zone in 
the sealing layer. In addition, the results from Jayne et al. [29] generated 
50 stochastic permeability distributions in the basalt reservoir for CO2 
migration simulations. The results suggested that uncertainty in 
reservoir-scale permeability greatly impacts the accumulation and dis
tribution of CO2. Besides CO2 saturation and pressure detection, Yang 
et al. [30] focused on groundwater pH as an index to monitor leakage 
detection because groundwater pH decreases due to CO2 dissolution. 
The computed results showed that the probability of leakage detection is 

over 90% when the change in pH is bigger than 0.7. 
Even though many laboratory and numerical studies have been done 

to study the migration mechanisms of CO2 and pressure in the reservoirs 
[31,32,33,34], there are some disadvantages to these two methods. 
First, laboratory experiments are completed on core-scale rock samples, 
and upscaling laboratory results to field scale models gives rise to un
certainties [35,36,9]. In addition, even though some numerical studies 
present the effect of reservoir uncertainties on CO2 migration, the 
physics-based simulations are complicated and computationally 
expensive [37]. Some studies have shown that reservoir-scale simula
tions require days to months of computer time [26,38]. For example, the 
ensemble of 50 3-D CO2 injection models developed by Pollyea et al. 
[39] required more than 200 days of compute time, while utilizing 1024 
computer processors per simulation (~4.9 M processor hours). As nu
merical simulations become increasingly complex, there is a demon
strable need to increase computational efficiency while retaining the 
most salient attributes of the underlying physics. In this study, we 
combine recent advances in machine learning simulation methods with 
physics-based ensemble simulation techniques to unlock previously 
inaccessible knowledge about interconnected feedbacks between rela
tive permeability and capillary pressure during CO2 sequestration in a 
synthetic reservoir. 

2. Background 

In recent years, machine learning (ML) has become an important tool 
for efficiently analyzing large amounts of data in a variety of fields. As 
high-fidelity data sets become increasingly available for applications in 
many areas, ML methods are becoming an important tool for analyzing 
these “big data” problems [40,41,42,43]. For example, Karpatne et al. 
[44] used different ML methods, such as multitask learning and multi- 
instance learning, to estimate the amount of forest cover across four 
states in Brazil. These ML techniques showed good results in terms of the 
forest area. Similarly, Marjanović et al. [45], tested the support vector 
machines (SVM) method for high-performance landslide susceptibility 
mapping processes. The SVM method outperformed decision trees and 
logistic regression methods in evaluation measurements, and it provided 
an application of machine learning method in landslide risk assessment. 
Among the most beneficial use of ML methods is to reduce the compu
tational cost of analyzing complex parameter spaces. For example, Smith 
et al. [46] have applied neural networks to small organic molecules that 
span an immense space, so that the resulting models can predict the 
results of computationally intensive quantum–mechanical calculations 
at a much lower computational cost. For computational cost reduction in 
risk monitoring during CCS, Chen et al. [47] utilized multivariate 
adaptive regression splines to derive reduced order models from physics- 
based numerical simulations of CO2 injection in a saline aquifer. These 
reduced order models provide new insights for effective monitoring 
approaches about CO2 leakage with substantially less computational 
overhead than traditional multi-physics numerical simulations. 

The success of ML application in the geosciences is an outgrowth of 
the big data revolution that is transforming geosciences from a data-poor 
field to one with a wide variety of high-fidelity, multi-dimensional 
datasets [48]. The growing data availability opens up exciting new op
portunities for the application of machine learning methods to problems 
in geosciences [40,49,50]. The application of ML has shown outstanding 
performance in improving computational efficiency for subsurface 
simulations [51,52]. For example, Valera et al. [53] developed an 
alternative network reduction approach for fluid flow in a 3-D fracture- 
controlled fluid system by applying the ML method, and the computa
tional time decreased from hours to seconds. This latter study un
derscores the tremendous advantage in the application of ML methods, 
which is the ability to rapidly process patterns of large-scale and/or 
high-dimensional datasets, while efficiently capturing complex re
lationships between data and identifying previously inaccessible 
research targets. Importantly, this process also decreases personnel costs 
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and improves performance and reproducibility in comparison to human 
analysts [48,51]. In subsurface fluid-flow reservoir simulations, the 
primary goal of ML applications is to make highly accurate predictions 
of fluid migration, while improving computational efficiency. In doing 
so, the purpose of supervised ML methods is to find a low-cost empirical 
model that can map all input properties to their corresponding output 
variables, thus allowing for rapid predictions across all possible com
binations of input parameters. ML prediction should be considered as an 
expansion to physics-based simulations and not a replacement [54]. 
Some studies have shown the exploration of ML models in reservoir 
characterization. For example, Walls et al. [55] applied neural networks 
to predict lithologic classes based on the training of well log curves, e.g. 
total porosity, clay volume, and water saturation, in a North Sea turbi
dite. A 200 m depth interval of five well log data was used for training, 
and, afterward, the network was applied to expand the prediction of 
lithology to the full seismic volume (~5 × 105 km3). This process is also 
characterized as supervised learning, which is widely applied to physics- 
based problems [52]. 

One widely used ML method is the artificial neural network (ANN) 
model, loosely based on simple models of interconnected biological 
neurons [56]. ANN algorithms, consisting of a set of neurons, aim to find 
a representation that maps input parameters to output variables [48]. 
ANN is widely used for capturing features of image data from large 
datasets and was shown excellent performance for reducing the 
dimensionality of data [57,58]. As a result, ANN models have become 
popular in the geosciences applications for modeling nonlinear re
lationships [48]. For example, Beucher et al. [59] described the appli
cation of an ANN model for acid sulfate (AS) soil mapping to classify AS 
soil and non-AS soil sites. In addition, DeVries et al. [38] accelerated the 
calculation of viscoelastic earthquake cycle activity by more than 
50,000% applying extended ANN approach. 

Monitoring the fluid flow migration mechanisms of CCS projects is 
critical to ensure CO2 storage safety and efficiency. Physics-based, multi- 
phase fluid flow models that account for thermodynamics of the CO2- 
brine system are frequently applied to understand the site-scale behavior 
of CCS projects. For example, Wu et al. [13] and Pollyea [14] used 
response surface methods to gain insights into the effects of uncertainty 
in capillary pressure and relative permeability models, respectively, 
during industrial-scale CO2 injections. However, in storage reservoirs, 
numerous physical properties affect CO2 migration simultaneously. As a 
result, it is important to build a comprehensive understanding of CO2 
migration mechanisms under more realistic conditions. However, sim
ulations that quantify realistic conditions of the fluid migration mech
anism are computationally expensive and time consuming, requiring 
thousands of hours of computing time on a high-performance computing 
cluster. Recently, the application of ML has shown outstanding perfor
mance to speed up these simulations by capturing fundamental attri
butes, such as fluid pressure accumulation and CO2 saturation 
distribution. The objective of this study is to constrain CO2 plume ge
ometry and fluid pressure perturbation during industrial-scale CO2 
sequestration in a synthetic sandstone reservoir, while taking into ac
count joint parametric variability in both relative permeability and 
capillary pressure functions. In doing so, supervised ML using a deep 
ANN model is applied to capture the distribution of CO2 saturation and 
fluid pressure. The ML training process is based on 460 physics-based 
simulations describing different combinations of capillary pressure 
and relative permeability parameters. Afterward, the CO2 saturation and 
pressure migration under unknown capillary pressure and relative 
permeability conditions are explored. This study provides a better un
derstanding of the increased computational efficiency of computational 
simulations of CO2 sequestration achieved by ML application. In addi
tion, the prediction results provide fundamental supports for future 
improvement in the siting process of CCS field reservoir applications. 

3. Methods 

3.1. Physical model 

The conceptual model is a hypothetical sandstone reservoir that is (i) 
regionally confined by low permeability caprock, e.g., shale, and (ii) 
occurs at depth ~2000 m, with 16 m thickness and 100 km lateral extent 
(Fig. 1). This model domain is a 3-D cylindrical volume, which is dis
cretized as a 2-D system due to axial asymmetry. The injection well is 
completed in the center of the model domain with a radius of 0.1 m. 
Beyond the injection well, the model domain is discretized in the radial 
direction with 949 grid cells that increase logarithmically to a radial 
extent of 10,000 m. To simulate a semi-infinite far-field, the radial 
dimension is further discretized between 10,000 m and 100,000 m with 
50 additional grid cells to ameliorate non-physical pressure feedbacks 
from the lateral boundary. Vertical grid discretization is 1 m. The upper 
and lower boundaries are specified as adiabatic (no flow) because CCS 
reservoirs are generally confined by low permeability shale formations. 
The centrally located injection well is a Neumann type boundary, where 
CO2 is being injected through injection well at a constant rate of 8.0 kg/s 
for ten years. Initial conditions are specified as fully saturated in the 
wetting phase, with fluid pressure of 20 MPa, and temperature of 75 ◦C. 
These conditions reflect a disposal reservoir at ~2 km depth, where 
injected CO2 exists as a supercritical phase fluid (scCO2). The hydraulic 
parameters are listed in Table 1 based on Berea sandstone [60]. 

In this study, the effects of capillary pressure and relative perme
ability on CO2 migration mechanisms in storage reservoirs are modeled 
using characteristic curves, i.e., constitutive models. Capillary pressure 
effects are calculated using the constitutive relation originally devel
oped by van Genuchten [61], which models capillary pressure as a 
function of effective wetting phase saturation (S*) through the equation: 

Pcap = − Po

⎛

⎝[S*]
− 1

λ − 1

⎞

⎠

1− λ

. (1) 

In Equation (1), Po is the entry pressure, which characterizes the 
pressure increment required for the gas phase to first enters the pore 
network, λ is a fitting parameter (commonly called the phase interfer
ence parameter), which controls the curvature of the model, and S* is the 
effective wetting phase saturation, which is calculated as: 

S* =
Sl − Slr

Sls − Slr
. (2) 

In Equation (2), Sl is wetting phase saturation, Slr is the residual 
wetting phase saturation, and Sls is the saturated wetting phase satura
tion. These end member saturations represent conditions when (i) the 
wetting-phase is fully mobile (Sls) and (ii) the wetting phase is immobile 
(Slr). For this study, Sls and Slr are unity and 0.3, respectively. 

Wetting phase relative permeability is calculated with the van 
Genuchten-Mualem model [61], and it is given as: 

kw =
̅̅̅̅̅
S*

√
[

1 −

(

1 − S*
1
λ

)λ]2

, (3)  

where λ is van Genuchten fitting parameter, and S* is the effective 
wetting phase saturation (Eq. (2)). Non-wetting phase relative perme
ability is calculated with Corey curve [62] as: 

knw =
(

1 − Ŝ
)2(

1 − Ŝ
2)
, (4)  

where Ŝ is effective non-wetting phase saturation, and is represented as: 

Ŝ =
Sl − Slr

1 − Slr − Sgr
. (5) 

In Equation (5), Sl, and Slr are wetting phase saturation and residual 

H. Wu et al.                                                                                                                                                                                                                                      



Applied Energy 287 (2021) 116580

4

wetting phase saturation (Eq. (2)), and Sgr is residual non-wetting phase 
saturation when fully immobile. In this formulation for relative 
permeability, Sgr governs curvature of the non-wetting phase relative 
permeability model (Eq. (4)) and λ controls the curvature of the wetting- 
phase relative permeability model (Eq. (3)). 

As shown in Pollyea [14] and Wu et al. [13], Po, λ, and Sgr are 
important parameters controlling the geometry of CO2 plume and cor
responding fluid pressure distribution during the CO2 injection period; 
however, these parameters are subject to substantial uncertainty at the 
reservoir-site scale. Thus, the focus of this study is to quantify the role of 
these three parameters on CO2 migration and pressure distribution. The 
ranges for Po, λ, and Sgr are 1–200 kPa, 0.4–0.8, and 0.1–0.4, respectively 
[15,36,60,63,64,65,6,66,67,68]. In this study, λ is the same parameter 
in capillary pressure and relative permeability model. Different capillary 
pressure and relative permeability models are defined by different 
parameter combinations of Po, λ, and Sgr. 

To explain the effects of capillary pressure and relative permeability, 
a simulation ensemble is produced for unique combinations of Po, λ, and 
Sgr (from Pcap and krel model). The simulation ensemble is then analyzed 
to quantify the variability in both CO2 migration and fluid pressure 
perturbation during CO2 injections in a sandstone reservoir. A total of 
460 different parameter combinations are randomly selected from the 3- 
D parameter space (Fig. 2), and simulations are completed using 
TOUGH3 [69], compiled with the fluid property module, ECO2N [70]. 
The TOUGH3/ECO2N simulation code models nonisothermal mixtures 
of CO2, brine, and water using the multi-phase formulation for Darcy’s 
Law with phase partitioning on the basis of local equilibrium. Results 
from the physics-based simulation ensemble are utilized to train the 
ANN model, which is designed to provide estimates of both CO2 plume 
geometry and fluid pressure propagation for unsampled portions of the 
3-D parameter space. 

3.2. Artificial neuron networks (ANN) 

The ANN model is widely used in geosciences to analyze large 
datasets (i.e., “big data” problems) and it has been tested to be highly 
effective for capturing features of image data with large variabilities. 
The basic unit of a neural network is the neuron, and each neuron 
comprises a simple function. Each neuron has the same functional form 
but with independently variable learnable parameters [71]. Layers in 
ANN are characterized as different combinations of a specified number 
of neurons, where the calculated information is transferred between 
different layers, and ANN are composed of several different layers. 

Each neuron is an algorithm, which maps the relationship between 
inputs and outputs. The functional form of a single neuron is given by a 
set of weights and biases, along with an activation function, which are 
used to compute the activation (output) of a neuron as, 

a = f

(
∑N

i
ωixi + bi

)

,

where x, a, ω, and b represent input, output, weight, and bias, respec
tively, f is the specific activation function, and N is the total number of 
inputs. Typically, ω and b are unique to each neuron. The structure of 
ANN is described as many interconnected neurons organized as parallel 

Fig. 1. Two-dimensional symmetric model domain used in this study. The injection well is completed in the domain center with 0.1 m radius, and the next 949 grid 
cells with logarithmically increasing to 10,000 m, after which 50 grid cells increasing logarithmically to 100,000 m. The thickness of this domain is 16 m with a 
constant 1 m grid cell interval. Supercritical CO2 is being injected through the injection well at a rate of 8.0 kg/s (252,461 MT/year) for 10 years. 

Table 1 
Bulk hydrogeology and thermal reservoir properties.  

Reservoir properties 

Property Symbol Value Units 

Fluid Pressure Pf 20 MPa 
Temperature T 75 ◦C 
Salinity CNaCl 10,000 ppm 
Permeability k 4 × 10-13 m2 

Porosity ϕ 0.2 – 
Density ρr 2038 kg m− 3 

Specific heat Cp 1000 J (kg K)-1 

Thermal conductivity κr 1.6 W (m K)-1  

Phase Interference Parameter
0.5 0.6

Phase Interference Parameter0.6
0.7

0.5

0.7

E
nt

ry
Pr

es
su

re
o

(M
P

a) 0.01

0.1

Entry
Pressure

o(M
Pa)

0.01

0.1

Residual Gas

Saturation
gr (-)

Residual Gas
Saturation

gr (-)

0.15

0.35

0.25

0.15

0.25

0.35

Training set

Testing set
Validation set

Fig. 2. 3-D parameter combination distribution for datasets. Phase interference 
parameter λ governs curvature of van Genuchten model, while entry Pressure Po 
characterizes the pressure drop across the interface, and Residual gas saturation 
Sgr is the residual gas phase (CO2) saturation. 460 of different parameter 
combinations are randomly distributed in the parameter space, which consists 
of three sub-datasets. The amount of data for training, validation, and testing 
dataset are 340, 70, and 50, respectively. 
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layers (Fig. 3). For this study, the first layer corresponds to the input 
layer comprising five neurons, which are three parameters (Po, λ, Sgr) 
and spatial two coordinates (lateral and vertical) of each location. The 
last layer (the “output layer”) of the network constitutes the model 
predictions, which in this study is a single neuron that describes either 
CO2 saturation (sat) or pressure change (ΔP) for the given input location 
and simulation parameters. The interior layers are referred to as “hidden 
layers” to transfer inputs and outputs [38]. 

Inside the ANN, neurons take a weighted linear combination of the 
previous layer values and calculate a single value for the next layer by 
applying a specific function (Fig. 3). More specifically, al− 1

1 , al− 1
2 ,⋯..al− 1

N 

are outputs of l − 1 layer. For neuron i in layer l, al
i = f(

∑
wial− 1

i + bi) is 
calculated by taking values from the previous layer as input, and it 
outputs a single value to every neuron in layer l+1 [72]. For CO2 
saturation, which ranges from 0 to 1, we choose the sigmoidal activation 
for the output neuron. For pressure perturbation, which has no pre- 
defined range, we choose the linear activation function. As activations 
are computed in a single forward direction, the network is characterized 
as a feedforward network. Meanwhile, when dealing with different data, 
researchers should also take the structure of the network into account, 
which is specified by the number of neurons per layer and the number of 
hidden layers. In this study, separate deep ANN structures are utilized in 
training CO2 saturation and pressure: for pressure perturbation training, 
40 neurons per layer and 3 hidden layers were used, while for CO2 
saturation training, a deeper structure of 60 neurons per layer and 4 
hidden layers were applied. These values were found via hyper
parameter search on the validation data, exploring layer widths of 20, 
40, and 60 neurons and depths of 2, 3, 4 layers. 

The workflow of ANN consists of two phases: network training and 
final performance estimate (Fig. 4). These two phases require datasets 
for training, validation, and testing. The aggregate of these three data
sets constitute the full dataset required for developing the ANN 
emulator. Each dataset consists of two parts: five input parameters and 
the physics-based simulation results (Section 2.1). The training dataset 
is used for capturing features of simulation results, and the ML model 
calculates predictions based on the captured features. For evaluation, a 
cost function, the mean squared error (MSE), is applied to compare the 

physics-bases results and the results predicted by the ANN. The ANN 
model is trained by minimizing the cost function by gradient descent 
over batches of the dataset. The training phase processes many epochs, 
which is one complete presentation of the data set to be learned by ANN 
model, to capture features of physics-based results. During training, 
each epoch consists of exposing the network to a batch of samples to 
produce the predicted values and the cost function, then computing the 
gradient of network parameters (weights and biases), where the Adam 
[73] variant of gradient descent was applied. After one batch, this 
process is repeated for further batches of examples until the entire 

Fig. 3. Structure and setup of an example of artificial neuron networks (ANN). ANN consist of input layer, output layer, and hidden layers. Inside ANN, neurons 
representing weights take a weighted linear combination of the previous layer values and calculate a single value for the next layer applying a specific function. In 
this study, five neurons in the input layer correspond to five input parameters, and one neuron of the output layer represents the CO2 saturation or pressure output. 

Training set Validation set Testing set

Prediction

Machine learning
model

Full dataset

Training Model selection
and evaluation

Training Part

(Testing Part)
Final Performance Estimate

Fig. 4. Workflow of artificial neuron networks (ANN). There are two phases of 
ANN: training phase and test phase, and the full dataset consists of training set, 
validation set, and testing set throughout the two phases. The training set is 
applied to the machine learning model for features capture, and parameters of 
the machine learning model are updated through evaluation. The validation set 
is applied for model selection and evaluation. During phase two, the testing set 
is used for prediction performance evaluation. 
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dataset has been presented to the network. Afterward, these computed 
parameters are updated with respect to that gradient through the whole 
network. At the same time, after each epoch, the validation dataset is 
used to evaluate the model after the training of the training set, espe
cially to avoid overfitting on the training set, and this process improves 
the accuracy of prediction. Overfitting denotes a setback during 
training, in which the ML model is emphasizing or memorizing some 
certain parts of the dataset, resulting in improvements on the training 
dataset which do not generalize, as signaled by the performance on the 
validation dataset. To avoid overfitting, early stopping is performed, in 

which training is stopped if the validation error does not improve for 
200 epochs, and the model is reverted to the parameter set which per
formed best on the validation data. After the whole training process, the 
performance of prediction through the trained ML model is tested on the 
testing dataset in the final performance estimate step. 

To explore the combined effects of capillary pressure and relative 
permeability, a 3-D parameter space comprising Po, λ, and Sgr is created 
to identify systematic changes in CO2 plume geometry and fluid pressure 
propagation on the basis of these three reservoir properties (Fig. 2). Each 
point in this parameter space represents a unique combination Po, λ, and 

Fig. 5. ANN Prediction results analyses of four different capillary pressure and relative permeability parameter combinations for CO2 saturation and fluid pressure 
perturbation. From left to right, the figures demonstrate the physics-based simulation results, ANN prediction results, and the difference between them. The color 
scale for the pressure perturbation difference plots is zoomed-in compared to the simulation and prediction results. 
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Sgr. The full dataset for ANN training, validation and testing comprises 
CO2 saturation and fluid pressure results from the physics-based nu
merical simulations of 460 randomly selected parameter combinations. 
The full dataset is segmented in 340 for ANN training, 70 for ANN 
validation, and 50 for ANN testing. The ANN emulator is developed 
using the Pytorch deep learning library [74]. 

4. Results & discussion 

4.1. Overall accuracy 

The ANN training process captures features of physics-based simu
lation results, and then stops when no further improvement of the cost 
function is achieved. Once the training process is finished, prediction for 
the whole testing dataset is made based on the best ML model found 
through training. The results and analyses of the prediction of the testing 
dataset are shown in Figs. 5 and 6. All the figures show the results at the 
end of 10 years’ injection time. 

In Fig. 5, four different parameters combinations of capillary pres
sure and relative permeability models (Po, λ, and Sgr) are represented to 
analyze accuracy of ANN model prediction for CO2 saturation and 
pressure perturbation. An additional ten randomly selected parameter 
combinations of the testing dataset are shown in Appendix Figs. S1 and 
S2 for CO2 saturation and pressure, respectively. From left to right, the 
figures demonstrate the physics-based simulation results, ANN predic
tion results, and the difference between them. The broad similarity be
tween the physical and predicted images implies that the ANN model 
captures the salient aspects of the physics-based model. 

Fig. 6 shows the complete evaluation of prediction results for CO2 
saturation and pressure accumulation across the reservoir for all 50 

simulation results in the testing dataset. Fig. 6A, 6D illustrate the ANN 
results in comparison with physics-based results for each grid cell of the 
reservoir domain for the whole testing dataset, which is a 50-simulation 
ensemble. For this analysis, the dots are colored by the number of grid 
cells that correspond with the physics-ANN comparison. Note that the 
red diagonal denotes a perfect match, where physics-based results 
values are equal to ANN predicted values. The generally efficacy of the 
ANN emulator is apparent as counts exceed 104 along the diagonal. As 
with the individual examples presented in Fig. 5, the aggregate analysis 
of ANN prediction shows that pressure perturbation (Fig. 6D) out
performs that for CO2 saturation (Fig. 6A), as the pressure results pre
cisely falling on the diagonal red line, whereas a number of the counted 
grid cells in the CO2 saturation prediction scenario fall off the diagonal 
owing to the two steep leading edges of the CO2 plume (Fig. 6A). The 
first steep edge is a large saturation drop around the injection well, 
across a fully saturated area (left yellow column in physics-based images 
of CO2 saturation in Fig. 5). On top of this full saturation edge, the edge 
of the CO2 plume also shows a steep saturation drop, ranging from non- 
zero to zero values. A similar situation was observed by Zhang et al. 
[28], who found that a steep saturation drop at the edge of CO2 plume 
from ~0.1 to 0 at a short distance of 200 m. This systematic disparity 
occurs because the ANN model tends to smooth sharp gradients with 
more continuous changes. This phenomenon is a result of the CO2 
saturation requiring a deeper network to capture the boundary features 
in comparison to the fluid pressure. In addition, two peaks of the 
counted grid cell distribution are located in two corners where the 
saturation is 0% (bottom left of Fig. 6A) and 100% (top right of Fig. 6A), 
with a large number of grid cells falling in the area of 0% (no CO2 
saturation in the far-field) and 100% saturation (fully saturated around 
the injection well) area. 

Fig. 6. The evaluation of predicted results for CO2 saturation and pressure accumulation across the reservoir. Figures A and D illustrate the counted distribution of all 
grid cells in the testing dataset with the comparison between physics-based simulation and ANN prediction results of the reservoir domain. Figures B and C indicate 
the comparison of the maximal plume length when sat = 1% and 20% of physics-based and ANN prediction results for the testing dataset, respectively. Figures E and 
F demonstrate the lengths of pressure perturbation distribution when ΔP = 0.5 MPa and 1.5 MPa for testing dataset, respectively. 
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The length of CO2 saturation and pressure plume are of particular 
interest because they provide estimations for leakage observation and 
storage efficiency [26]. Fig. 6B presents the comparison between the 
physics-based and ANN prediction results for the testing dataset on the 
maximum length of the plume when CO2 saturation is 0.01 (i.e., 1% free- 
phase CO2), which is considered as the boundary of the plume. In 
contrast, Fig. 6C captures the plume migration maximal distance when 
CO2 saturation is 0.2 (20% free-phase CO2). The testing performance for 
the 20% CO2 contour is better than that of the 1%, as indicated by a 
higher proportion of the 20% results falling on the diagonal. The reason 
for the performance difference lies in the smooth trend of ANN model at 
the plume boundary for 0.01 CO2 saturation, which is harder to predict 
the steep drop of at the plume boundary for 0.01 CO2 saturation. 
Similarly, Fig. 6E and 6F demonstrate the maximum length of pressure 
perturbation distribution when ΔP is 0.5 MPa and 1.5 MPa for testing 
dataset, respectively. The results imply that the trained ANN model 
performs well regarding pressure change. However, some physics-based 
simulations did not reach 1.5 MPa overpressure, resulting in fewer dots 
(counted grid cells with physics-ANN comparison) in Fig. 6F. 

The results over the testing dataset demonstrate ANN emulation 
methods provide excellent results for capturing the major distribution of 
both CO2 saturation and fluid pressure change when trained on physics- 
based numerical simulations. This result is well supported when 
comparing the pixel-by-pixel difference between the physics-based 
model and the ANN emulator (Fig. 5, third column). These results also 
show that much of the difference between the physics-based and ANN 
model occurs in predictions of CO2 saturation at the leading edge of the 
plume, where the saturation gradient is the highest. In contrast, the 
differences in fluid pressure accumulation are more evenly distributed 
across the model. This disparity may be a result of the physical and 
chemical processes governing CO2 migration and fluid pressure propa
gation. For example, fluid pressure propagation is governed by pressure 
diffusion, which is a smoothly varying response to the pressure gradient. 
In contrast, CO2 saturation at the leading edge of the plume is governed 
by complex interactions between multi-phase transport properties and 
fluid system thermodynamics, i.e., CO2 dissolution [12]. In aggregate, 
the individual results presented in Fig. 5 suggest that ANN methods 
adequately capture the overall patterns for both CO2 saturation and fluid 
pressure propagation, but subtle variations of interconnected physical 
and chemical process are subject to modest uncertainty. How precisely 
the ANN model captures the location of the leading edge of the CO2 
plume is treated as a standard to decide the possibility of the ANN 
model. Enlarging the size of the training dataset is an optimal approach 
to improve training performance. Different sizes of the training dataset 
(50, 200, and 340) have been tested to demonstrate the adequate 
amount of the training data to be applied in the ANN model. In Fig. S3, it 
presents the pixel-by-pixel comparison between physics-based results 
and ANN results and the comparison about the maximum length of the 
plume of 1% and 20% CO2 saturation for the testing dataset with 
different amount of training data (similar as Fig. 6). The comparison 
results proved that increasing the size of the training dataset enhances 
the training performance, and the model with 340 training data shows 
the best testing results in terms of better distribution along the red di
agonal. Nonetheless, the performance of the model trained to 50 points 
was qualitatively correct, though it fails to accurately capture subtle 
measurements such as the plume length defined by a 1% saturation 
threshold. Increasing the size of the training dataset is able to get more 
accurate results [75], and it improves the reliability of the ANN model 
and provides more trustful predictions, which can be used in the latter 
analyses and field project applications. As a result, the 3-D prediction 
generations in the following section are based on the model with 340 
training data. 

4.2. Parametric analysis of 3-D parameter space 

The ability of the ANN model to emulate results of the physics-based 

model suggests that the ANN model is suitable for sampling the 
parameter space at higher resolution with much greater computational 
efficiency than the physics-based modeling approach. On this basis, the 
ANN network developed in Section 2.2 is used to generate CO2 satura
tion and pressure propagation models across a finely discretized sam
pling of the parameter space comprising 2691 unique parameter 
combinations. These ANN models are then utilized to generate response 
surface mappings for analyzing systematic variations of CO2 plume ge
ometry and pressure accumulation across the complete 3-D parameter 
space. Fig. 7A presents the complete response mapping for maximum 
lateral extent of 1% CO2 saturation, which shows where the farthest 
plume edge (1% CO2 saturation is treated as plume edge) is under 
different parameter combinations. To more clearly identify patterns in 
the response mapping, Fig. 7B presents an isosurface of Fig. 7A to il
lustrates the parameter combinations for which the maximum radial 
extent of 1% CO2 saturation is 900 m: to find out under which parameter 
combinations, the farthest plume edge is 900 m. Similarly, Fig. 8A shows 
the response surface mappings for the maximum lateral extent of 0.5 
MPa fluid pressure for ANN model (shows where the farthest 0.5 MPa 
pressure change edge is under different parameter combinations), while 
Fig. 8B shows the isosurfaces within Fig. 8A for which the maximum 
radial extent of 0.5 MPa fluid pressure propagation is 2000 m: to find out 
under which parameter combinations, the farthest 0.5 MPa pressure 
change edge is 2000 m. 

The results of discrete analysis developed as part of the ANN testing 
procedure (Fig. 6A–C) illustrate the high efficiency of ANN predictions 
due to the comparison between physics-based results and ANN predic
tion results, and it provides support for detailed analysis of the ANN 
response and isosurface mappings across the completed 3-D parameter 
space. The prediction results provide a more comprehensive under
standing of parameter effects analyses. 

The results presented in Fig. 7 indicate that capillary entry pressure 
(Po) imposes first-order control on the maximum extent of CO2 migra
tion. This is evident by the steep vertical gradient in the response map, 
particularly at low Po (Fig. 7A), as well as the 900 m isosurface, which 
exhibits a systematic trend across the parameter space (Fig. 7B). This 
result suggests that capillary pressure effects are more important for 
lateral CO2 migration than relative permeability effects. This result 
contradicts Pollyea [14], which tested only the relative permeability 
parameter space found that CO2 mobility, and thus plume extent, is 
governed by non-wetting phase relative permeability, which is largely 
controlled by residual gas saturation (Sgr). However, the finding that low 
entry pressure results in larger CO2 plumes is congruent with Wu et al. 
[13], which tested the parameter space for the capillary pressure model. 
This phenomenon occurs because small Po encourages the migration of 
CO2 saturation, however, the effects of Sgr and λ impose greater control 
on CO2 plume extent as Po increases. This can be seen in Fig. 7B as the 
isosurface declines from back top left to front bottom right, where large 
λ and small Sgr facilitate increasing CO2 mobility. These second order 
effects occur because phase interference (λ) governs the curvature of the 
wetting phase relative permeability, so that large λ maintains greater 
wetting-phase relative permeability allowing (i) pore drainage to more 
readily occur and (ii) the CO2 plume to migrate further from the injec
tion well. In contrast, residual CO2 saturation (Sgr) controls the curva
ture of non-wetting phase relative permeability, where large Sgr results 
in dramatic changes to nonwetting-phase relative permeability for very 
small changes in wetting phase saturation. As a consequence, Sgr is an 
important factor on CO2 mobility, and small Sgr maintains greater CO2 
mobility over a wider range of wetting phase saturation conditions. In 
aggregate, the black arrow on Fig. 7B indicates the curving trend of the 
isosurface taking the three parameters into account, however, the length 
of the CO2 plume is inversely proportional to the declining trend of the 
isosurface. Generally, the length of the plume shows the largest values at 
low Po, low Sgr, and high λ (Fig. 7A, red circle) and the smallest values at 
high Po, high Sgr, and low λ (Fig. 7A, blue circle). To illustrate the var
iable effects of Sgr with decreasing λ, two black dashed lines are drawn in 
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Fig. 7B to show how the 900 m isosurface dips gently in the upper left 
(low Po, low λ, and high Sgr), but the dips more steeply towards the lower 
right (high Po, high λ, and low Sgr). 

As with the CO2 plume extent, Po is the dominant parameter for 
pressure perturbation, which is indicated by the almost horizontally 
distributed isosurfaces (Fig. 8B). Entry pressure is the largest control of 
CO2 intrusion into pores media, and small Po implies more CO2 intrusion 
and farther fluid pressure propagation. For high Po, however, the effects 
of Sgr and λ are not uniform. In low λ and low Sgr area, their effect on 
fluid pressure propagation is limited, and Po controls the migration of 
fluid pressure. In contrast, high λ and high Sgr encourage the migration 
of fluid pressure, supported by the declining trend of isosurface as shown 
in black arrow (Fig. 8B). In addition, λ and Sgr show equal contribution 
to the increase of fluid pressure propagation, as indicated by the same 
slope of the two black dash lines (Fig. 8B). Specifically, there is a peak of 
fluid pressure propagation for high Sgr and low λ, and this suggests that 
Sgr imposes second-order control on pressure migration. Sgr governs the 
mobility of the non-wetting phase, and high Sgr illustrates the slow CO2 
mobility increase as it enters pores, resulting in the fast accumulation of 
fluid pressure. 

The predicted results based on the ANN model provide an under
standing of the combined effects of capillary pressure and relative 
permeability to CO2 saturation and fluid pressure migration in a sand
stone reservoir during the CCS injection period. Three parameters Po, λ, 
and Sgr from different capillary pressure and relative permeability 
models are studied, and the response surface results of 3-D parameter 
space show that Po is the dominant parameter controlling the migration 

of CO2 saturation and fluid pressure accumulation, which further im
plies that capillary pressure effects are of greater importance for pre
dicting both CO2 plume geometry and fluid pressure accumulation. 
Small Po encourages the migration of CO2 saturation and fluid pressure 
accumulation, while large Po inhibits the migration. In addition, the 
effect of λ and Sgr increase with increasing Po. For CO2 saturation, large λ 
and small Sgr encourages the migration of CO2 saturation, while the 
effect of Sgr increases for the low λ range. However, high Sgr encourages 
the migration of pressure to a large extent comparing to λ. 

4.3. Applications of ML methods in CCS 

To ensure CO2 storage safety and efficiency, it is essential to monitor 
the fluid flow migration in CCS storage reservoirs. Many physics-based 
multi-phase fluid flow models accounting for different reservoir prop
erties are applied to understand reservoir behaviors of CCS projects. In 
physics-based simulations, usually one single reservoir property with a 
large parametric variance is discussed for understanding its uncertainty 
effects to the multi-phase fluid flow system, e.g. relative permeability, 
capillary pressure, and thermal conductivity. However, it is computa
tionally expensive and time consuming to quantify the simultaneous 
effects of more than one reservoir properties applying physics-based 
simulations. The application of ML method offers a substantial advan
tage for speeding up these simulations and makes it possible that to 
analyze the effects of parametric variability in higher dimensional space, 
e.g., the combined effects of relative permeability and capillary pressure 
analyzed in this study. Results from this study initially demonstrate that 
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entry pressure (Po) from the capillary pressure model is the dominant 
control to both CO2 plume distribution and pressure propagation, and 
entry pressure should be emphasized during reservoir evaluation and 
risk monitoring during CCS projects. 

Results from this study also demonstrate that the trained ML model 
offers an alternative method for simulating CO2 saturation and fluid 
pressure migration features across a high-dimensional parameter space. 
Furthermore, the new ML model represents advantages in terms of 
computational efficiency and run-time acceleration. For example, the 
physics-based simulations developed for this study required ~4000 h 
(~6 months) CPU time to produce 460 CO2 injection simulations using 
the TOUGH3 code. In contrast, it takes a few hours to train the ML model 
to this entire dataset, and a few minutes to make predictions about 
thousands of combinations of reservoir parameters. In general, the 
trained ANN model can accelerate the CO2 saturation and pressure 
distribution prediction process without training by at least 25,000%. In 
addition, the Pytorch ML library [74,76] was been shown here to result 
in a highly efficient workflow; the ANN model developed for this project 
comprises just a couple of hundred lines of python code. 

In addition, the trained ML model provides an immense potential for 
predicting CO2 migration results over an extended parameter range, 
which may prove beneficial for developing intuition about the outcomes 
of complex multi-phase flow and transport processes in the face of 
substantial parametric uncertainty. Moreover, the combination of ANN 
simulation methods and response surface analysis provides a framework 
for efficiently analyzing parametric uncertainty with increasingly higher 
dimensionality. More broadly, the trained ANN model performs well in 
capturing CO2 saturation and pressure features during CCS and shows 
the capability in facilitating closer examination of larger parameter 
spaces with substantial gains of computational efficiency. As a result, the 
examination can contribute to deeper understanding in the underlying 
physical fundamentals of CO2 saturation and pressure perturbation 
mechanisms. The application of this modeling approach may also pro
vide new avenues of support for in the siting CCS projects. Furthermore, 
the workflow developed here for ANN model development is broadly 
applicable to numerous geoenergy technologies, e.g., enhanced 
geothermal, oilfield wastewater disposal, subsurface hydrogen storage, 
and nuclear waste disposal. 

5. Conclusion 

This study combines physics-based multi-phase simulations with 
machine learning methods to simultaneously interrogate the 3-D 
parameter space that governs both capillary pressure and relative 
permeability. The physics-based models are utilized as training input for 
an ANN emulator that reproduced CO2 saturation and fluid pressure 
distribution over a wide range. The trained ANN model provides accu
rate prediction over a large parameter space with speedups of at least 
25,000 times, in which the massive simulation ensembles can be 
generated in minutes comparing to several months which are typically 
required to run physics-based simulations with TOUGH3 codes. Once 
trained with the physics-based simulations, the prediction results 
though the ANN model provides basic insights into CO2 migration 
physics and phenomenology. 

Analyzing the fundamental parameters (Po, λ, and Sgr) that govern 
the multi-phase CO2-brine flow suggests that  

(1) Capillary entry pressure (Po) is the dominant parameter at the 
small Po range. Small Po encourages the migration of CO2 satu
ration and fluid pressure accumulation, while large Po inhibits the 
migration.  

(2) The effect of λ and Sgr increase along with the increase of Po. 
Especially, for saturation, the effect of Sgr increases with 
decreasing λ for the large Po range. Moreover, large λ and small 
Sgr encourages the migration of CO2 saturation. In contrast, for 
pressure, the migration is encouraged by high Sgr.  

(3) With the trained ANN model, the CO2 migration prediction over a 
large parameter space has achieved an acceleration by 
~25,000%, which decreases the computational time scale of 
massive multi-phase fluid flow simulation ensembles from years 
to hours. 

The analyses of different parameters from capillary pressure and 
relative permeability models provide a more comprehensive under
standing of the CO2 saturation and pressure migration mechanisms. 
More broadly, this artificial neural network approach could be applied 
to other geologic fluid systems to gain deeper insights into the compli
cated relationships between multi-phase fluid flow, thermodynamics, 
and fluid-rock interactions. 
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