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INTRODUCTION
Light detection and ranging (LiDAR) pro-

vides a powerful tool for high-resolution ter-
rain surface mapping and is becoming increas-
ingly accessible to the research community in 
the form of portable, ground-based terrestrial 
LiDAR scanners (Buckley et al., 2008). Sur-
face roughness is one attribute that has gained 
popularity for analyzing high-resolution point 
cloud data, and has been used across a broad 
spectrum of geoscience disciplines to inves-
tigate such diverse topics as channel bed 
morphology (Cavalli et al., 2008), landslide 
morphology (Glenn et al., 2006; McKean and 
Roering, 2004), eolian mass transport following 
wildfi re (Sankey et al., 2010), and alluvial fan 
mapping (Frankel and Dolan, 2007). Similarly, 
surface roughness has been measured explicitly 
to investigate displacement surface geometry 
along faults (Sagy et al., 2007), and to optimize 
model scaling of in situ rock joint roughness for 
hydromechanical analysis (Fardin et al., 2004). 
These studies represent only a fraction of those 
that use LiDAR data collection methods, and a 
review of the published literature indicates that 
this number is growing at an increasing rate.

Surface roughness is generally defi ned as the 
standard deviation of the distances of data points 
from a model surface datum (usually defi ned on 
the basis of local subsets of the full data set) or, 
in at least one case (Frankel and Dolan, 2007), 
of the changes in slope from a moving window 
across the data. Numerous methods have been 

proposed for estimating surface roughness from 
a gridded point cloud data set using a variety of 
surface fi tting procedures. These include digital 
elevation models (DEMs) (McKean and Roer-
ing, 2004; Cavalli et al., 2008), ordinary least-
squares (OLS) regression planes (Fardin et al., 
2004), neighborhood detrending (Davenport 
et al., 2004), a priori coordinate axes rotation 
to create an exposure-parallel principal plane 
(Sagy et al., 2007), and smoothing functions 
such as kriging (Frankel and Dolan, 2007), 
thin-plate splines (Glenn et al., 2006), and mov-
ing window means (Sankey et al., 2010). The 
common feature of these methods is that model 
surfaces are fi t as a function of variability in 
one spatial coordinate, typically elevation. This 
implicitly assumes that the orientation of the 
principal plane is fi xed, and that the applica-
tion of a low-frequency fi lter over one coordi-
nate will suffi ce to establish a local datum from 
which to measure point distances for estimating 
surface roughness. Although this assumption 
may be reasonable for the analysis of airborne 
LiDAR data sets or regions of negligible relief, 
it becomes tenuous for ground-based LiDAR 
applications. This is of particular concern with 
the increasing application of LiDAR to outcrop 
scanning, where one can reasonably expect 
outcrop orientations and local (grid scale) sur-
faces to deviate signifi cantly from the principal 
planes. By restricting the model surface to be a 
function of one spatial coordinate, the chosen 
surface can inject underlying topographic vari-

ability into the surface roughness estimates, 
resulting in artifi cially high estimates and spa-
tially correlated errors.

Here we present a surface roughness model 
based on plane fi tting by orthogonal distance 
regression (ODR) that (1) builds on the exist-
ing defi nition of surface roughness as a function 
of point distances from a model surface; (2) 
effectively fi lters out topographic variability at 
the super-gridblock scale; and (3) is robust to 
principal axis orientation. These properties are 
demonstrated by applying the proposed ODR-
based surface roughness model to a terrestrial 
LiDAR scan of a vertical basalt exposure and 
comparing the results to a more common model 
based on OLS plane fi tting.

SURFACE ROUGHNESS ALGORITHM
The general workfl ow for the surface rough-

ness algorithm proposed here consists of seg-
menting the point cloud data set using a regu-
lar three-dimensional grid, and within each 
grid cell: (1) establish a local (grid cell) refer-
ence plane by orthogonal distance regression, 
(2)  compute orthogonal distances from the ref-
erence plane to each point in the grid cell, and 
(3) estimate surface roughness for each grid cell 
as the standard deviation of orthogonal point-to-
plane distances. This process is performed over 
each grid cell in the point cloud; the mathemat-
ics of the procedure are presented in the remain-
der of this section.

The local (grid cell) reference datum is defi ned 
as a plane given by the standard plane equation:

 z x y= + +β β β0 1 2 , (1)

where x, y, and z are spatial coordinates in !3 
vector space and β0, β1, and β2 are plane coef-
fi cients. Plane coeffi cients are found using 
orthogonal distance regression, which seeks a 
plane that minimizes orthogonal point-to-plane 
distances. Markovsky and VanHuffel (2007) 
provided a succinct and informative review of 
ODR methods (also called total least-squares 
regression) and provided an analytical expres-
sion for the orthogonal distance regression prob-
lem, restated here with respect to a subset (grid 
cell) of point cloud data in !3 vector space: 

 ββ                 σ= −( )−
X X I X zT T2 1

, (2)

where ββ is the vector of plane coeffi cients, X 
is the design matrix, superscript T denotes the 
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ABSTRACT
With the increasing accessibility of terrestrial light detection and ranging scanners 

(LiDAR), generating tools to elicit meaningful information from high-density point cloud 
data has become of paramount importance. Surface roughness is one metric that has gained 
popularity, largely due to the accuracy and density of LiDAR-derived point cloud data. Sur-
face roughness is typically defi ned as a spread of point distances from a reference datum, 
the standard deviation of point distances from a model surface being a commonly employed 
model. Unfortunately, a recent literature review has found that existing surface roughness 
models are far from standardized and may be prone to error resulting from underlying sur-
face topography. In the research presented here, we develop a surface roughness model that 
is robust to underlying topographic variability by segmenting the point cloud with a three-
dimensional regular grid, establishing local (grid cell) reference planes by orthogonal distance 
regression, and estimating the surface roughness of each grid cell as the standard deviation 
of orthogonal point-to-plane distances. This surface roughness model is employed to identify 
fracture and rubble zone distributions within a terrestrial LiDAR scan from a basalt outcrop 
in southeast Idaho, and the results are compared to a more common model based on ordinary 
least-squares plane fi tting. Results indicate that the orthogonal regression model is robust to 
outcrop orientation and that the ordinary least-squares model systematically overestimates 
surface roughness by contaminating estimates with spatially correlated errors that increase 
with decreasing grid size.
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matrix transpose, zz is the vector of z coordinates, 
σ is the smallest singular value of the augmented 
matrix [X z], and I is the !3 identity matrix.

Once the plane coeffi cients are determined, 
the orthogonal distance from each point in the 
grid cell to the regression plane is determined 
as follows: (1) translate each observation vec-
tor (data point) such that all observation vec-
tors in the grid cell share a common origin in 
the regression plane, and (2) compute the scalar 
projection of the translated observation vectors 
onto the plane normal vector. Here we choose 
the z intercept of the regression plane (β0) as 
the new vector origin as it is known explicitly. 
By scaling the plane normal vector, n, to unit 
length, each orthogonal point-to-plane distance 
is the positive inner product of the observation 
vector and the unit normal vector:

 D i Ni = ⋅ = …n vu i , 1, , , (3)

where Di is an orthogonal point-to-plane dis-
tance within the grid cell, nu is the unit normal 
vector to the local regression plane, and vi is an 
observation vector (data point) with its origin 
at the z intercept. Once all orthogonal point-to-
plane distances have been evaluated within a 
grid cell, the surface roughness (θ) is modeled 
as the standard deviation of these distances: 

 θ = −( )
=
∑1 2

1N
D Di

i

N

. (4)

APPLICATION TO AN OUTCROP 
DATA SET

The proposed ODR-based surface roughness 
algorithm was applied to a terrestrial LiDAR 
scan of a vertical basalt exposure at the Box 
Canyon in southeast Idaho (Fig. 1). The scanned 
exposure consists of two adjacent basalt fl ows 
and portions of several additional fl ows. The 
outcrop measures ~90 m horizontal by 10 m 
vertical, exhibits signifi cant fracturing, and has 
a rubbly fl ow margin near the center of the expo-
sure (Fig. 1). LiDAR scanning was performed in 
June 2010, using a Leica ScanStation 2. Indi-
vidual scans (n = 14) were acquired and merged 
with a mean registration error of 0.004 m. In 
total, ~65 million data points were obtained. 
After post-processing to remove vegetation, the 
data were exported such that exposure orienta-
tion was approximately parallel to the xz plane.

A FORTRAN 2003 program was written to 
execute the ODR-based surface roughness algo-
rithm, and a similar program was used for mod-
eling surface roughness based on fi tting grid cell 
planes by OLS regression. In a statistical sense, 
OLS regression assumes that all deviation from 
the regression model is contained in one vari-
able, the response or dependent variable, and 
that the remaining (independent) variables are 

error free. The OLS-based roughness algo-
rithm therefore fi ts a grid cell regression plane 
by minimizing point-to-plane distances in one 
coordinate direction, which, for this analysis, 
is the direction of the exposure-normal prin-
cipal axis. The OLS algorithm then evaluates 
surface roughness as the standard deviation of 
these point-to-plane distances. The OLS surface 
roughness algorithm therefore performs similar 
to surface roughness models that fi t a DEM to 
the point cloud, then estimate surface roughness 
from the statistics of point elevations above the 
model surface.

The ODR and OLS algorithms were executed 
for the entire Box Canyon data set using four 
successively smaller grid intervals (1 m, 0.5 m, 
0.25 m, and 0.125 m), and the summary statis-
tics are presented in Table 1. In evaluating the 
summary statistics, it becomes evident that the 
OLS-based algorithm systematically returns 
greater surface roughness and the discrepancy 
between the ODR and OLS methods increases 
with each grid refi nement. Fracture distribu-
tion maps of the Box Canyon exposure were 
generated for each method on the 0.125 m grid 
using binary transform plots (0.05 cutoff) for 
normalized surface roughness (Fig. 2). The lack 
of detail present in the OLS map results from 

systematic overestimation of surface roughness 
in regions of high topographic variability (e.g., 
surfaces with signifi cant departure from the 
underlying principal plane). This effect is ana-
lyzed in the following.

DISCUSSION
The larger roughness values returned by the 

OLS algorithm in areas of greater topographic 
variability arise because OLS assumes a baseline 
surface common to all subsets of the data. This 
datum is assumed to exist without error, and the 
error (i.e., the distances from the best-fi t plane to 
the data point) is assigned wholly to the depen-
dent axis. In the Box Canyon outcrop, for exam-
ple, the baseline surface was chosen a priori to 
be the principal coordinate plane approximately 
parallel with the trend of the basalt exposure, 
which, in this instance, is the xz plane. Subse-
quent OLS plane fi tting was then performed for 
each grid cell by minimizing the point-to-plane 
distances with respect to the exposure-normal 
principal axis (y). In contrast, the ODR-based 
roughness algorithm calculates each best-fi t 
plane independent of the principal axes orienta-
tions by fi tting a regression plane that minimizes 
orthogonal point-to-plane distances in each grid 
cell. Using minimum orthogonal point-to-plane 

Figure 1. Box Canyon, Idaho, basalt exposure used for this investigation. Exposure is ~90 m 
horizontal by 10 m vertical. Note that this image is not orthorectifi ed.

TABLE 1. SURFACE ROUGHNESS SUMMARY STATISTICS

Total 
gridblocks 

(N)

Average 
points per 
grid cell

Minimum* Maximum* Mean* Variance† Standard 
Deviation*

0.125 m grid
ODR surface roughness 53508 1222 0.0000 0.1202 0.0069 4.32 × 10−5 0.0066

7240.08100.04810.06846.00000.0ssenhguor ecafrus SLO

0.25 m grid
ODR surface roughness 13755 4752 0.0000 0.1324 0.0146 1.57 × 10−4 0.0125

1840.03200.05820.00295.00000.0ssenhguor ecafrus SLO

0.5 m grid
ODR surface roughness 3565 18334 1.00 × 10−8 0.1963 0.0332 5.50 × 10−4 0.0235
OLS surface roughness 7.80 × 10−7 0.4651 0.0478 0.0030 0.0545

1.0 m grid
ODR surface roughness 948 68947 6.69 × 10−4 0.3245 0.0696 0.0016 0.0600

6040.06300.03970.02844.07100.0ssenhguor ecafrus SLO

Note: ODR—orthogonal distance regression; OLS—ordinary least squares.
*Surface roughness units are given in meters. 
†Units in square meters.
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distances forces the ODR algorithm to return 
the smallest possible roughness values for any 
procedure that models surface roughness as a 
function of point-to-plane distances. It is there-
fore intuitive that, for grid cells in regions where 
surface expressions deviate signifi cantly from 
the exposure-parallel principal plane, the OLS 
method will result in overall greater point-to-
plane distances (i.e., greater roughness values) 
than the ODR method (Table 1).

Systematic overestimation of OLS-based sur-
face roughness in regions of high topographic 
variability is of concern because this effec-
tively suppresses fi ne-scale detail by decreasing 
the infl uence of smaller roughness intensities 
relative to the entire distribution. This effect is 
illustrated by plotting histograms of normal-
ized (over their respective ranges) OLS and 
ODR surface roughness distributions from the 
0.125 m grid (Fig. 3), where ~86% of the OLS 
roughness estimates are contained in small-
est roughness bin (0–0.05) (Fig. 3A). This is 

in stark contrast to the ODR histogram, which 
holds ~63% of the normalized roughness val-
ues in the smallest roughness bin (Fig. 3B). In 
other words, by normalizing each roughness 
data set over its range and comparing the OLS 
and ODR roughness distributions, it becomes 
evident that the artifi cially high OLS-based 
estimates decrease the signal-to-noise ratio, 
severely affecting the overall roughness distri-
bution by masking the infl uence of low to mod-
erate roughness intensities. This effect can be 
seen in binary transform maps of normalized 
surface roughness at the 0.05 threshold (Fig. 2). 
As shown in Figure 2A, the OLS method accu-
rately reproduces coarse features (wide aperture 
fractures and rubbly basalt fl ow margins), but 
cannot render fi ne-scale intrafl ow fractures. In 
contrast, for the same normalized roughness 
threshold the ODR method, being more sensi-
tive to local topographic deviation, is capable 
of reproducing coarse features as well as the 
fi ner details which, in this case, are the column-

normal and column-bounding fractures within 
the fl ow interior (Fig. 2B).

Because the ODR algorithm minimizes 
point-to-plane distances with respect to all three 
coordinate axes, the ODR surface roughness 
measurements represent minimum error esti-
mates for comparison with the OLS-based sur-
face roughness measurements. The OLS model 
error, EOLS, can therefore be defi ned as the abso-
lute value of the difference between the rough-
ness estimates:

 EOLS OLS ODR= −θ θ , (5)

where θ is the roughness estimate for a given 
grid cell (developed by OLS or ODR methods 
as indicated by the subscript).

Semivariogram analyses were performed for 
the Box Canyon ODR and OLS surface rough-
ness estimates, as well as the EOLS, for grid dis-
cretizations of 1 m, 0.5 m, 0.25 m, and 0.125 m 
(Fig. 4). Semivariograms for the 1 m grid 
(Fig. 4A) show that the OLS (triangles), ODR 
(circles), and EOLS (plus symbols) are in gen-
eral agreement, indicating that errors due to the 
OLS method are negligible for large grid cells. 
In fact, the grid cell dimension at which this gen-
eral agreement of the OLS and ODR semivario-
grams occurs may be considered a characteristic 
length scale of the underlying topography that the 
OLS method is unable to fi lter. As the grid size is 
successively reduced for subsequent grid refi ne-
ments, the OLS and EOLS semivariograms begin 
deviating from the ODR semivariogram, and this 
deviation becomes increasingly pronounced with 
additional refi nement (Figs. 4B–4D). Similarly, 
as the OLS and EOLS semivariograms deviate fur-
ther from the ODR semivariogram, their spatial 
dependence increases (lower semivariogram val-
ues indicate stronger spatial dependence), result-
ing in artifi cially suppressed uncertainty, i.e., the 
OLS semivariogram suggests a lower nugget 
effect (implying greater certainty) than the ODR 
semivariogram. In addition, with each grid refi ne-
ment the OLS and EOLS semivariograms become 
closer to unity, indicating that for highly refi ned 
grids, error is a dominant contribution to the OLS 
surface roughness estimates and that these errors 
become increasingly correlated with each grid 
refi nement. This spatial correlation of the OLS 
errors arises as a result of the residual topographic 
variability that the OLS plane-fi tting algorithm 
is unable to fi lter. The presence of spatially cor-
related errors implies that the OLS method of 
estimating roughness will propagate underlying 
topographic variability of the surface in the guise 
of roughness into any subsequent analysis that 
makes use of the surface roughness data.

The propagation of spatially correlated errors 
in OLS-based surface roughness estimates may 
be of negligible import for situations where 
there is little underlying topographic variability, 
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Figure 2. Binary transform maps of normalized surface roughness estimates from Box Canyon 
LiDAR (light detection and ranging) data evaluated on 0.125 m grid. Values ≥0.05 are denoted 
in black and values <0.05 are denoted in gray. Distances are in meters. A: Surface roughness 
model generated using the ordinary least-squares plane-fi tting algorithm. B: Surface rough-
ness model generated using orthogonal distance regression plane-fi tting algorithm.

Figure 3. Histograms of normalized surface roughness for the Box Canyon LiDAR (light 
detection and ranging) data segmented on 0.125 m grid. A: Histogram of normalized surface 
roughness for ordinary least-squares–based method. B: Histogram of normalized surface 
roughness for orthogonal distance regression–based method.
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or the super-gridblock variability can be fi ltered 
out before making roughness estimates. How-
ever, most real-world applications of LiDAR 
technology involve the scanning of surfaces that 
are of variable orientation (e.g., outcrops that 
include changes in slope, contain prominences 
or depressions). To date, these situations have 
been approached in an ad hoc manner using var-
ious OLS-type roughness algorithms that fi t ref-
erence datum as a function of one spatial coordi-
nate and/or constrain reference datum such that 
adjacent planes share a common edge; this latter 
constraint is a notable DEM feature represent-
ing the primary difference between DEM refer-
ence datum and the OLS regression plane used 
in this analysis. By imposing these constraints 
on the grid cell reference datum (best-fi t planes) 
from which surface roughness is modeled, the 
subsequent roughness estimates are contami-
nated with super-gridblock-scale topographic 
variability containing spatially correlated errors. 
The case of an amphitheater-shaped outcrop, 
where the exposure wraps around an obser-
vation point, is of special interest because the 
ODR-based estimates of roughness are invari-
ant to the orientation of the scanned face. As a 
result, using the ODR algorithm allows all data 

to be analyzed simultaneously, without detrend-
ing or piecemeal rotations of the outcrop princi-
ple axes, while avoiding the outcrop orientation 
errors to which OLS-type methods are prone.

CONCLUSION
In this paper we have sought to present a gen-

eral tool for estimating surface roughness that 
builds on previous efforts and is robust to expo-
sure orientation, while minimizing the effects 
of underlying surface topography. We have 
shown that orthogonal distance regression and 
orthogonal point-to-plane distance measure-
ments satisfy these requirements and avoid the 
propagation of spatially correlated errors that 
are associated with OLS-type surface roughness 
models commonly in use. The method of ODR 
presented here is somewhat more computation-
ally expensive than OLS methods; however, the 
greater versatility and defensibility of the ODR 
method provide a standard against which future 
LiDAR-based investigations involving surface 
roughness estimates may be measured. In addi-
tion, applying the ODR-based surface rough-
ness models to point cloud data from a scanned 
outcrop is demonstrated to be an effective tool 
for mapping discontinuities on a scanned out-

crop surface. This technique may have broad 
appeal for practitioners seeking data to sup-
port discrete fracture network models, training 
images for multiple-point geostatistics in frac-
tured systems, and fracture density maps for 
geomechanical investigations.
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Figure 4. Normalized experimental semivariograms of orthogonal distance regression–
based surface roughness (circles), ordinary least-squares (OLS)–based surface roughness 
(triangles), and OLS-based surface roughness errors (plus symbols). A: For 1 m grid. B: For 
0.5 m grid. C: For 0.25 m grid. D: For 0.125 m grid.


